Math I UNIT 5 OVERVIEW: Exponential Functions

Unit Outcomes At the end of this unit, your student should be able to:	Key Vocabulary Terms to deepen the student's understanding
\checkmark Classify exponential functions as growth or decay \checkmark Compare/contrast properties and the graphs of linear and exponential functions \checkmark Construct a graph of an exponential function from a table, sequence or a situation \checkmark Model an exponential relationship between two quantities with tables, graphs, and equation \checkmark Recognize that the solutions to an exponential equation are represented by the points on the graph \checkmark Understand that a geometric sequence is a sequence of numbers where the ratio between consecutive numbers is constant \checkmark Understand that an exponential function has a r value greater than 1 if the function is growing \checkmark Identify the common ratio of the sequence \checkmark Write the first and subsequent terms of the sequence \checkmark Evaluate functions for given domains \checkmark Recognize a pattern will allow them to determine an arithmetic or geometric model \checkmark Translate between the recursive (NOW/NEXT) and explicit forms in modeling situations \checkmark Construct a table and graph of a linear function with slope m and exponential rate of change equal to the slope to identify the point where the exponential function exceeds the linear function \checkmark Determine the difference between the rate of change of a linear model (add each time) versus an exponential model (multiply each time)	\checkmark Base \checkmark Common Ratio \checkmark Constant \checkmark Explicit Form \checkmark Exponent \checkmark Exponential Decay \checkmark Exponential Equation \checkmark Exponential Form \checkmark Exponential Function \checkmark Exponential Growth \checkmark Function Notation \checkmark Geometric Sequence \checkmark Horizontal and Vertical Translation \checkmark Initial Term \checkmark Intercepts \checkmark Intervals Where Increasing, Decreasing, Positive or Negative \checkmark NOW-NEXT \checkmark Rate of Change \checkmark Relative Maximum \checkmark Relative Minimum
Key Standards Addressed Connections to Common Core/NC Essential Standards	Where This Unit Fits Connections to prior and future learning
A-CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. 8.F. 3 Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line. A-REI. 10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve. A-SSE. 1 Interpret complicated expressions by viewing one or more of their parts as a single entity. A-SSE. 2 Use the structure of an expression to identify ways to rewrite it. F-BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k. F-LE. 3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or as a polynomial function. F-LE. 5 Interpret the parameters in a linear or exponential function in terms of a context. $\mathrm{N}-\mathrm{Q} .1$ Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	Coming into this unit, students should have a strong foundation in: \checkmark Solving one variable equations \checkmark Graphing linear functions \checkmark Identifying the initial value for a linear function $\checkmark \quad$ Writing recursive and explicit forms of an equation \checkmark Identifying key features of a function from a graph This unit builds to the following future skills and concepts: \checkmark Solving quadratic equations $\checkmark \quad$ Solving systems of equations and inequalities through graphing, substitution and elimination $\checkmark \quad$ Graphing and analyzing more complex functions (including inverse, step, exponential, absolute value, trigonometric and logarithmic functions) \checkmark Using regression models to predict linear, quadratic and exponential models

Math I UNIT 5 OVERVIEW: Exponential Functions

F-IF. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements
that use function notation in terms of a context. Note: At this level, the focus is linear and exponential functions.
F-IF. 4 For a function that models a relationship between two quantities, interpret key features of
graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal
description of the relationship. Key features include: intercepts; intervals where the function is
increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end
behavior; and periodicity. Note: At this level, focus on linear, exponential and quadratic functions; no end behavior or periodicity.
F-IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative
relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to
assemble n engines in a factory, then the positive integers would be an appropriate domain for the
function. Note: At this level, focus on linear and exponential functions.
F-IF. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a
table) over a specified interval. Estimate the rate of change from a graph.
Note: At this level, focus on linear functions and exponential functions whose domain is a subset of the integers.
F-IF.7e Graph functions expressed symbolically and show key features of the graph, by hand in simple
cases and using technology for more complicated cases. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. Note: At this level, for part e, focus on exponential functions only.
F-IF.8b Write a function defined by an expression in different but equivalent forms to reveal and
explain different properties of the function.
b. Use the properties of exponents to interpret expressions for exponential functions. For example,
identify percent rate of change in functions such as $y=(1.02) t, y=(0.97) t, y=$ (1.01) $12 t, y=$
(1.2)t/10, and classify them as representing exponential growth or decay.

F-IF. 9 Compare properties of two functions each represented in a different way (algebraically,
graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one
quadratic function and an algebraic expression for another, say which has the larger maximum.
Note: At this level, focus on linear, exponential, and quadratic functions.
F-BF. 1 Write a function that describes a relationship between two quantities.
a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
b. Combine standard function types using arithmetic operations. For example, build a function
that models the temperature of a cooling body by adding a constant function

Math I UNIT 5 OVERVIEW: Exponential Functions

to a decaying
exponential, and relate these functions to the model. Note: At this level, limit
to addition or subtraction of constant to linear, exponential or quadratic
functions or addition of linear functions to linear or quadratic functions.
F-BF. 2 Write arithmetic and geometric sequences both recursively and with
an explicit formula, use
them to model situations, and translate between the two forms.
Note: At this level, formal recursive notation is not used. Instead, use of
informal recursive notation
(such as NEXT = NOW + 5 starting at 3) is intended.
F-LE.1c Distinguish between situations that can be modeled with linear
functions and with exponential
functions
c. Recognize situations in which a quantity grows or decays by a constant
percent rate per unit
interval relative to another.
F-LE. 2 Construct linear and exponential functions, including arithmetic and
geometric sequences,
given a graph, a description of a relationship, or two input-output pairs
(include reading these from a table).

Additional Resources
Materials to support understanding and enrichment
\checkmark Exponential Growth and Decay
\checkmark Modeling exponential growth and decay (video)
\checkmark Graphing exponential functions (practice)
\checkmark Evaluating exponential functions (practice)
\checkmark Geometric sequences overview (video)
\checkmark Write explicit form of geometric sequences (practice)

"Learning Checks" Questions Parents Can Use to Assess

 Understanding$\checkmark \quad$ What considerations should be taken into account when determining the boundaries and scales of a graph?
$\checkmark \quad$ What are the key features of an exponential function?
$\checkmark \quad$ When given one of the four forms of information, what should be taken into consideration when determining the best function to model the situation?
\checkmark How do you determine the best model for a data pattern?
$\checkmark \quad$ Why is a multiplicative rate of change the key feature of an exponential function and how is it revealed in the different forms of this function (verbal, graph, table, equation)?
$\checkmark \quad$ When given a sequence, how do you identify whether it is arithmetic or geometric and how do you write a rule for the sequence?

[^0]
[^0]: * Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact wakemiddle@wcpss.net.

