## $8^{\text {th }}$ Grade UNIT 7 OVERVIEW: Pythagorean Theorem

| Unit Outcomes <br> At the end of this unit, your student should be able to: | Key Vocabulary <br> Terms to deepen the student's understanding |
| :---: | :---: |
| $\checkmark$ Explain a proof of the Pythagorean Theorem and its converse <br> $\checkmark$ Apply the Pythagorean Theorem to find perimeter and area <br> $\checkmark$ Apply the Pythagorean Theorem in order to find the distance between two points. | $\checkmark$ Base <br> $\checkmark$ Exponent <br> $\checkmark$ Hypotenuse <br> $\checkmark$ Legs <br> $\checkmark$ Perfect Square <br> $\checkmark$ Pythagorean Theorem <br> $\checkmark$ Pythagorean Triple <br> $\checkmark$ Right Angle <br> $\checkmark$ Right Triangle <br> $\checkmark$ Square Root |
| Key Standards Addressed <br> Connections to Common Core/NC Essential Standards | Where This Unit Fits <br> Connections to prior and future learning |
| 8.NS. 2 - Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., $\pi^{2}$ ). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations. <br> 8.EE. 2 - Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where $p$ is a rational number. <br> 8.G.6 - Explain a proof of the Pythagorean Theorem and its converse. <br> 8.G.7- Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real world and mathematical problems in two and three dimensions. <br> 8.G.8 - Apply the Pythagorean Theorem to find the distance between two points in a coordinate system | Coming into this unit, students should have a strong foundation in: <br> $\checkmark$ Solving equations with square roots <br> $\checkmark$ Estimating irrational numbers <br> $\checkmark$ Applying the triangle sum theorem and triangle inequality theorem <br> This unit builds to the following future skills and concepts: <br> $\checkmark$ Solving equations using the Pythagorean Theorem <br> $\checkmark \quad$ Using trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems |
| Additional Resources <br> Materials to support understanding and enrichment | "Learning Checks" <br> Questions Parents Can Use to Assess Understanding |
| $\checkmark$ Teaching videos made by Wake County teachers <br> $\checkmark$ WCPSS YouTube Channel - Math Playlist <br> $\checkmark$ Pythagorean Theorem Overview <br> $\checkmark$ Pythagorean Theorem Video <br> $\checkmark$ Pythagorean Theorem Practice <br> $\checkmark$ Pythagorean Theorem Practice 2 | What is the relationship between the sides of a right triangle? <br> $\checkmark$ What is the significance of using right triangles in the real world? <br> $\checkmark \quad$ Where might you see the Pythagorean Theorem outside of school? <br> Explain the Pythagorean Theorem |

