$8^{\text {th }}$ Grade UNIT 5 OVERVIEW: Solving Equations

Unit Outcomes At the end of this unit, your student should be able to:	Key Vocabulary Terms to deepen the student's understanding
\checkmark Solve simple equations \checkmark Solve equations that include variables on both sides, using the distributive property, and combining like terms \checkmark Fluently solve equations with one solution, infinitely many solutions, or no solution \checkmark Solve literal equations with a focus on solving equations for the y variable	\checkmark Addition property of \checkmark Infinitely Many Opposites Solutions \checkmark Additive Identity \checkmark Inverse Operation Property of Zero \checkmark Like Terms \checkmark Coefficient \checkmark No Solution \checkmark Distributive Property \checkmark Solution \checkmark Equation \checkmark Subtraction Property \checkmark Equivalent Expressions of Equality \checkmark Evaluate \checkmark Expression
Key Standards Addressed Connections to Common Core/NC Essential Standards	Where This Unit Fits Connections to prior and future learning
8.EE. 2 - Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational. 8.EE.7-Solve linear equations in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $\mathrm{x}=\mathrm{a}, \mathrm{a}=\mathrm{a}$, or $\mathrm{a}=\mathrm{b}$ results (where a and b are different numbers). b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.	Coming into this unit, students should have a strong foundation in: \checkmark Understanding of what a variable represents \checkmark Setting up and solving one-, two-, and multi-step equations containing integers and rational numbers \checkmark Solving equations using the distributive property \checkmark Setting up and solving basic equations from word problems This unit builds to the following future skills and concepts: \checkmark Manipulating equations in linear form \checkmark Solving systems of equations with more than one variable

Additional Resources Materials to support understanding and enrichment	"Learning Checks" Questions Parents Can Use to Assess Understanding
\checkmark Teaching videos made by Wake County teachers	\checkmark Can an equation ever have more than one solution?
\checkmark WCPSS YouTube Channel - Math Playlist	\checkmark Is it possible for an equation to have no solutions?
\checkmark Variables on Both Sides Video	\checkmark How are numerical and variable expressions alike?
\checkmark Solving an Equation Overview	How are they different?
\checkmark Distributive Property Video	\checkmark How do you solve an equation that has variables
\checkmark Combining Like Terms Video	and constants on both sides of the equal sign?
\checkmark Solving Equations Practice	\checkmark What key words do you look for in word problems
\checkmark Solving Equations Practice \#2	to let you know what operation(s) to use in your
\checkmark Literal Equations Overview	equation?

\checkmark Kuta Software
\checkmark No Solution and Infinite Solutions Overview

[^0]
[^0]: * Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact wakemiddle@wcpss.net.

