$8^{\text {th }}$ Grade UNIT 2 OVERVIEW: The Real Number System

Unit Outcomes At the end of this unit, your student should be able to:	Key Vocabulary Terms to deepen the student's understanding
\checkmark Articulate the relationship between fractions and decimals, convert fractions to decimals, and recognize that numbers with decimal expansion that terminate in Os or eventually repeat can be written as a fraction \checkmark Identify irrational numbers in various forms and estimate their value \checkmark Distinguish between rational and irrational numbers \checkmark Convert a repeating decimal to a fraction \checkmark Compare and order rational and irrational numbers \checkmark Locate numbers, particularly approximations of irrational numbers, on a number line	\checkmark Cube Root \checkmark Rational Number \checkmark Fraction \checkmark Real Number \checkmark Integer \checkmark Repeating Decimal \checkmark Irrational number \checkmark Square Roots \checkmark Natural Number \checkmark Terminating Decimal \checkmark Perfect Cubes \checkmark Truncate \checkmark Perfect Square \checkmark Whole Number \checkmark Radical \checkmark Radicand
Key Standards Addressed Connections to Common Core/NC Essential Standards	Where This Unit Fits Connections to prior and future learning
8.NS. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. 8.NS. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5, and explain how to continue on to get better approximations.	Coming into this unit, students should have a strong foundation in: \checkmark Converting rational fractions to decimals \checkmark Converting rational decimals to fractions \checkmark Comparing rational numbers \checkmark Ordering rational numbers on a number line This unit builds to the following future skills and concepts: \checkmark Solving equations with real numbers \checkmark Solving Pythagorean Theorem equations \checkmark Utilizing Volume formulas
Additional Resources Materials to support understanding and enrichment	"Learning Checks" Questions Parents Can Use to Assess Understanding
\checkmark Teaching videos made by Wake County teachers \checkmark WCPSS YouTube Channel - Math Playlist \checkmark Repeating Decimals Overview \checkmark Converting Overview \checkmark Real Numbers Overview \checkmark Repeating Decimals Practice $\checkmark \quad$ Fractions to Decimals Practice \checkmark Decimals to Fractions Practice \checkmark Converting Fractions and Decimals Video \checkmark Real Numbers Video \checkmark Repeating Decimals Video \checkmark Professions that use Rational Numbers	$\checkmark \quad$ When is fraction form more helpful than decimal form and vice-versa? Where are fractions and decimals used in the real world? $\checkmark \quad$ When is a decimal approximation more helpful than an exact number? $\checkmark \quad$ Where are irrational numbers used in the real world? \checkmark Why do we classify numbers? \checkmark Where else are classifications used? Why?

[^0]
[^0]: * Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact wakemiddle@wcpss.net.

