## $8^{\text {th }}$ Grade UNIT 1 OVERVIEW: Number Sense

| Unit Outcomes <br> At the end of this unit, your student should be able to: | Key Vocabulary <br> Terms to deepen the student's understanding |
| :---: | :---: |
| $\checkmark$ Determine if a number is a perfect square or a perfect cube <br> $\checkmark$ List the first 15 perfect squares <br> $\checkmark$ Evaluate square roots of small perfect squares and cube roots of small perfect cubes <br> $\checkmark$ Estimate the value of square roots of non-perfect squares and find their approximate value on the calculator | $\checkmark$ Cube Root <br> $\checkmark$ Integer <br> $\checkmark$ Irrational Numbers <br> $\checkmark$ Perfect Cube <br> $\checkmark$ Perfect Square <br> $\checkmark$ Radical <br> $\checkmark$ Radicand <br> $\checkmark$ Rational Numbers <br> $\checkmark$ Root <br> $\checkmark$ Square Root <br> $\checkmark$ Whole Number |
| Key Standards Addressed <br> Connections to Common Core/NC Essential Standards | Where This Unit Fits <br> Connections to prior and future learning |
| 8.EE. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=$ $p$, where $p$ is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational. <br> 8.NS. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., $\pi^{2}$ ). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue on to get better approximations. | Coming into this unit, students should have a strong foundation in: <br> $\checkmark$ Simplifying expressions with exponents <br> $\checkmark$ Understanding what it means to "square" a number <br> This unit builds to the following future skills and concepts: <br> $\checkmark$ Comparing and ordering rational and irrational numbers <br> $\checkmark$ Solving equations with real numbers <br> $\checkmark$ Solving Pythagorean Theorem equations <br> $\checkmark$ Utilizing Volume formulas |
| Additional Resources <br> Materials to support understanding and enrichment | "Learning Checks" <br> Questions Parents Can Use to Assess Understanding |
| $\checkmark$ Teaching videos made by Wake County teachers <br> $\checkmark$ WCPSS YouTube Channel - Math Playlist <br> $\checkmark$ Squares and Square Roots Overview <br> $\checkmark$ Cubes and Cube Roots Overview <br> $\checkmark$ Estimating Square Roots Video <br> $\checkmark \quad$ First 15 Perfect Squares Study Tool <br> $\checkmark$ Squares and Square Roots Practice <br> $\checkmark$ Radicals Overview <br> $\checkmark$ Professions That Use Radicals <br> $\checkmark \quad$ Identifying and Finding Square Roots Video <br> $\checkmark \quad$ Identifying and Finding Cube Roots Video | $\checkmark$ What makes a number a "perfect square"? <br> $\checkmark$ How does a "perfect square" relate to the area of a checkerboard? <br> $\checkmark$ What makes a number a "perfect cube"? <br> $\checkmark$ How does a "perfect cube" relate to the volume of a cube? <br> $\checkmark$ Why is it impossible to take the square root of a negative number? <br> $\checkmark$ What professions commonly use square roots? <br> $\checkmark$ Why is it possible to take the cube root of a positive or negative number? <br> $\checkmark \quad$ Why is it useful to be able to approximate square roots? |

[^0]
[^0]:    * Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact wakemiddle@wcpss.net.

