$8^{\text {th }}$ Grade UNIT 14 OVERVIEW: Transformations

Unit Outcomes At the end of this unit, your student should be able to:	Key Vocabulary Terms to deepen the student's understanding	
\checkmark Graph translations on a coordinate plane and describe the translation.	$\begin{array}{ll} \hline \checkmark & A^{\prime} \\ \checkmark & I_{1} \end{array}$	\checkmark Pre-Image \checkmark Reflection
\checkmark Graph reflections on a coordinate plane and describe the reflection.	\checkmark Center of Rotation \checkmark Clockwise	\checkmark Rigid Transformation \checkmark Rotate 180°
Graph rotations on a coordinate plane and describe the rotation.	\checkmark Composition of Transformation	\checkmark Rotate 270° \checkmark Rotate 90°
Verify and understand the properties of transformation in translations, reflections, and rotations.	\checkmark Counterclockwise \checkmark Dilation \checkmark Glide Reflection	\checkmark Rotation \checkmark Scale factor \checkmark Transformation
\checkmark Identify dilation and describe its effect on the properties of the pre-image.	\checkmark Image \checkmark Isometry	\checkmark Translation
\checkmark Perform compositions of transformations.	\checkmark Line of Reflection \checkmark Origin	

Key Standards Addressed
Connections to Common Core/NC Essential Standards
8.G.1 - Verify experimentally the properties of rotations, reflections, and translations:
a. Lines are taken to lines, and line segments to line segments of the same length.
b. Angles are taken to angles of the same measure.
c. Parallel lines are taken to parallel lines.
8.G.2 - Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
8.G.3 - Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
8.G.4-Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar twodimensional figures, describe a sequence that exhibits the similarity between them.

Where This Unit Fits Connections to prior and future learning
Coming into this unit, students should have a strong foundation in:
\checkmark Drawing geometric shapes with given conditions
\checkmark Graphing points on a coordinate plane
\checkmark Knowing that an ordered pair is written as (x, y)
\checkmark Turns, slides, and flips of figures in space

This unit builds to the following future skills and concepts:
\checkmark Developing definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, and line segments
\checkmark Representing, describing, and comparing transformations
\checkmark Rotations around points other than the origin
\checkmark Reflections over linear equations (i.e. $y=x$)
\checkmark Changing dimensions (dilations) of two- and three-dimensional figures
$8^{\text {th }}$ Grade UNIT 14 OVERVIEW: Transformations

Additional Resources Materials to support understanding and enrichment	"Learning Checks" Questions Parents Can Use to Assess Understanding
\checkmark Teaching videos made by Wake County teachers \checkmark WCPSS YouTube Channel - Math Playlist \checkmark Overview of all Transformations - Includes some enrichment \checkmark Rotations Overview \checkmark Rotations Practice \checkmark Translations Video \checkmark Translations Practice \checkmark Reflections Overview \checkmark Reflections Practice \checkmark Transformations Overview \checkmark Transformations Practice \checkmark Translations \checkmark Rotating 90 degrees \checkmark Rotating 180 degrees $\checkmark \quad$ Reflections over the x-axis $\checkmark \quad$ Reflections over the y-axis \checkmark Basic Dilations \checkmark Composition of Transformations - This link shows everything from the basics to enrichment through videos and practice	\checkmark How does the location of a point change when the x-coordinate increases? $\checkmark \quad$ What type of rotation will rotate back to the original point? \checkmark Which transformation is the most important? Justify your response. \checkmark What are the differences and similarities between transformations? \checkmark How would you create a PSA (public service announcement) about transformations? \checkmark How do we describe how objects are moved? \checkmark How could you complete a combination of transformations? Can you create "rules" or formulas for this combination? \checkmark What changes or stays the same in a figure after a translation, reflection, or rotation? $\checkmark \quad$ When two lines are parallel and then a translation, reflection, or rotation is performed the two lines remain parallel. Why do the slopes of the parallel lines in the pre-image and image not always remain the same? Is the image of a vertical line sometimes, always, or never vertical after a translation, a reflection, or a rotation? \checkmark How do we reduce or enlarge an object proportionally? \checkmark How do you know that dilations create similar figures? \checkmark How is a glide reflection identified? \checkmark Which compositions will create congruent figures? Similar figures? \checkmark Think of a career that might involve transformations. How would you use transformations if you had a job in that field?

[^0]
[^0]: * Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact wakemiddle@wcpss.net.

