$8^{\text {th }}$ Grade UNIT 13 OVERVIEW: Systems of Equations

	Unit Outcomes
	At the end of this unit, your student should be able to:
\checkmark	Determine whether a system of equations has one
	solution, no solution, or infinite solutions by graphing.
\checkmark	Solve systems of equations by graphing.
\checkmark	Use the substitution method to solve systems of
	equations.
\checkmark	Use addition and subtraction in solving systems of
	equations by elimination.
\checkmark	Solve systems of equations using the best method for
	the given problem (graphing, substitution, or
	elimination).
\checkmark	Solve systems of equations using a variety of methods.
\checkmark	Solve real world problems involving systems of
	equations with graphing, substitution, and elimination.

Key Vocabulary			
	Terms to deepen the student's understanding		
$\checkmark \checkmark$	Infinitely Many Solutions		
\checkmark	Intersecting		
\checkmark	No Solution		
\checkmark	Parallel Lines		
\checkmark	Solution of a System of Linear Equations		
\checkmark	Standard Form		
\checkmark	Substitution		
\checkmark	System of Linear Equations		

Key Standards Addressed

Connections to Common Core/NC Essential Standards
8.EE. 8 - Analyze and solve pairs of simultaneous linear equations.
a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+$ $2 y$ cannot simultaneously be 5 and 6 .
c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.
$8^{\text {th }}$ Grade UNIT 13 OVERVIEW: Systems of Equations

Additional Resources Materials to support understanding and enrichment	"Learning Checks" Questions Parents Can Use to Assess Understanding
\checkmark Teaching videos made by Wake County teachers \checkmark WCPSS YouTube Channel - Math Playlist \checkmark Systems of Equations Overview \checkmark Solving by Graphing Overview \checkmark Solving by Graphing Video \checkmark Solving by Elimination Overview \checkmark Solving by Elimination Video \checkmark Solving by Elimination Practice \checkmark Solving by Substitution Overview \checkmark Solving by Substitution Video \checkmark Solving by Substitution Practice \checkmark Systems Word Problem Video	\checkmark How will you know whether a system has one solution, no solution, or infinitely many solutions? \checkmark How do you find a solution to a system of equations with a graph? \checkmark Suppose you are testing two fertilizers on bamboo plants A and B, which are growing under identical conditions. Plant A is 6 cm tall and growing at a rate of $4 \mathrm{~cm} /$ day. Plant B is 10 cm tall and growing at a rate of $2 \mathrm{~cm} /$ day. After how many days will the bamboo plants be the same height? What will their height be? \checkmark What kinds of systems would be difficult to solve by graphing? \checkmark How do you solve a system of equations using substitution? \checkmark When have you used the word substitute in math before? How did you solve problems that asked you to substitute? \checkmark How can you check to see if your answer to a system of equations problem is correct? \checkmark How do you find a solution to a system of equations using elimination? \checkmark Why is it best to have the equations in standard form when solving by elimination? $\checkmark \quad$ What are the different ways you can solve a system of equations? \checkmark How do you decide which variable to eliminate? \checkmark What are three methods for solving systems of equations? $\checkmark \quad$ When is each method of solving systems of equations beneficial? \checkmark How do you solve systems of equations by graphing, substitution, and elimination? How do you know which one to use? \checkmark Outside of school, when might you need to solve systems of equations problems? \checkmark Once you find a break-even point, how can it help you in a decision about whether to purchase something, how much to sell, or if you should go with a certain company?

[^0]
[^0]: * Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact wakemiddle@wcpss.net

