## $8^{\text {th }}$ Grade UNIT 11 OVERVIEW: Linear Functions - Equations of Lines

| $\begin{array}{c}\text { Unit Outcomes }\end{array}$ |  |
| :--- | :--- | :--- |
| $\checkmark$ | $\begin{array}{l}\text { Recognize slope-intercept form of a line and define the } \\ \text { slope and y-intercept }\end{array}$ |
| $\checkmark$ | $\begin{array}{l}\text { Graph a line given the equation, determine the slope } \\ \text { of the line, and the y-intercept of the line }\end{array}$ |
| $\checkmark$ | $\begin{array}{l}\text { Use effective strategies for writing linear equations } \\ \text { from verbal, numerical, or graphical information }\end{array}$ |
| $\checkmark$ | Apply linear equations to real-world situations |$\}$

## Key Standards Addressed

Connections to Common Core/NC Essential Standards
8.EE.5-Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
8.EE.6 - Use similar triangles to explain why the slope $m$ is the same between any two distinct points on a nonvertical line in the coordinate plane; derive the equation $y$ $=m x$ for a line through the origin and the equation $y=m x$ $+b$ for a line intercepting the vertical axis at $b$.
8.F. 3 - Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.
8.F.4 - Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two ( $\mathrm{x}, \mathrm{y}$ ) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or table of values.

Key Vocabulary
Terms to deepen the student's understanding
Horizontal
$\checkmark$ Linear Equation
$\checkmark$ Linear Function
$\checkmark$ Linear Relationship
$\checkmark$ Non-Linear Function
$\checkmark$ Proportional Relationship
$\checkmark$ Similar Triangles
$\checkmark$ Slope
$\checkmark$ Slope-Intercept Form
$\checkmark$ Standard Form of an Linear Equation
$\checkmark$ Unit Rate
$\checkmark$ Vertical
$\checkmark$ Vertical Line Test
$\checkmark$ x-intercept
$\checkmark$ x-intercept
$\checkmark$ y-intercept
$y$-value

## Where This Unit Fits Connections to prior and future learning

Coming into this unit, students should have a strong foundation in:
$\checkmark$ Computing unit rates
$\checkmark$ Recognizing and representing proportional relationships between quantities
$\checkmark$ Identifying the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships
$\checkmark$ Representing proportional relationships with equations
$\checkmark$ Identifying relations and functions by graphs, tables/ordered pairs, and equations
$\checkmark$ Determining constant rate of change given a graph, table or equation.
$\checkmark$ Explaining how slope effects the graph of an equation in $y=m x$ form
$\checkmark \quad$ Finding slope from a graph and from any two points

## This unit builds to the following future skills and

 concepts:$\checkmark$ Construct and interpret a linear function given a graph, verbal description, a table or a set of ordered pairs
$\checkmark$ Compare two different linear functions represented in different forms
$\checkmark$ Prove that linear functions grow by equal differences over equal intervals

## $8^{\text {th }}$ Grade UNIT 11 OVERVIEW: Linear Functions - Equations of Lines

| Additional Resources <br> Materials to support understanding and enrichment | "Learning Checks" <br> Questions Parents Can Use to Assess Understanding |
| :---: | :---: |
| $\checkmark$ Teaching videos made by Wake County teachers <br> $\checkmark$ WCPSS YouTube Channel - Math Playlist <br> $\checkmark$ Slope-Intercept Form Overview <br> $\checkmark$ Slope-Intercept Form Practice <br> $\checkmark$ Graphing Linear Equations Video <br> $\checkmark$ Graphing Linear Equations Practice <br> $\checkmark$ Linear Equation Word Problem Video <br> $\checkmark$ Linear Equation Word Problem Practice <br> $\checkmark$ Standard Form of an Equation Video <br> $\checkmark$ Standard Form of an Equation Practice <br> $\checkmark$ Standard Form of an Equation Practice 2 <br> $\checkmark$ Horizontal and Vertical Lines Video <br> $\checkmark$ Horizontal and Vertical Lines Practice | $\checkmark \quad$ What is the difference between connecting the points on a graph with a straight line and connecting them with a dotted line? <br> $\checkmark$ How do you determine the slope and $y$-intercept of a line? <br> $\checkmark$ What is slope-intercept form? <br> $\checkmark$ How can slope-intercept form be useful in creating a graph? <br> $\checkmark$ What can you say about lines in slope intercept form just by looking at their equations? <br> $\checkmark$ What affect does slope have on your graph? <br> $\checkmark$ What affect does the $y$-intercept have on your graph? <br> $\checkmark$ What does the equation of a vertical line look like? <br> $\checkmark$ What does the equation of a horizontal line look like? <br> $\checkmark$ How is the equation for a horizontal and vertical line different when written in slope-intercept form? <br> $\checkmark \quad$ What is unique about vertical lines compared to all other lines? Why is this? <br> $\checkmark \quad$ What are real world situations that use linear equations and graphs? <br> $\checkmark$ What type of business could you create where you would use linear equations? |

[^0]
[^0]:    * Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact wakemiddle@wcpss.net.

