$8^{\text {th }}$ Grade UNIT 10 OVERVIEW: Linear Functions - Slope

Unit Outcomes At the end of this unit, your student should be able to:	
	Make tables and graphs to represent data
	Describe relationships between variables
	Use data patterns to make predictions
	Compare and contrast linear and nonlinear relationships
\checkmark	Show how similar triangles can be used to prove that the slope between any two points on a line is the same
	Determine the slope from a graph
\checkmark	Use the formula for slope to determine the slope of a line given two points on the line
\checkmark	Conclude that the slope of a line is the " m " in the equation of a line in $y=m x$ form
\checkmark	Understand the proportional relationship that exists when a line goes through the origin
\checkmark	Explain how the slope effects the graph of an equation in $y=m x$ form

Key Standards Addressed
Connections to Common Core/NC Essential Standards
8.EE. 5 - Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
8.EE. 6 - Use similar triangles to explain why the slope m is the same between any two distinct points on a nonvertical line in the coordinate plane; derive the equation y $=m x$ for a line through the origin and the equation $y=m x$ $+b$ for a line intercepting the vertical axis at b.
8.F.5 - Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

$8^{\text {th }}$ Grade UNIT 10 OVERVIEW: Linear Functions - Slope

Additional Resources Materials to support understanding and enrichment	"Learning Checks" Questions Parents Can Use to Assess Understanding
\checkmark Teaching videos made by Wake County teachers \checkmark WCPSS YouTube Channel - Math Playlist \checkmark Slope From Two Points Overview \checkmark Slope Overview \checkmark Slope and Similar Triangles Video \checkmark Slope Video \checkmark Horizontal and Vertical Lines Video \checkmark Slope From a Graph Practice - Kuta Software \checkmark Slope from Two Points Practice - Kuta Software \checkmark Horizontal and Vertical Lines Practice \checkmark Slope Practice	Where are linear and nonlinear relationships represented with the building of structures? How can you use equations to answer questions about a relationship? Does finding the rate of change for just one pair of points mean that the rate of change is the same for all of the data? The grade of a road is the ratio of rise to run expressed as a percent. As a road gets steeper, what happens to the rate of change? What is the slope of a horizontal and vertical line? What are examples of these in everyday life? What are some examples of objects that move at a constant rate in the real world? How can knowing the constant rate of an object be useful in the real world?

[^0]
[^0]: *Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact wakemiddle@wcpss.net.

