Math I UNIT 3 OVERVIEW: Two Variable Equations \& Functions

	Unit Outcomes
	At the end of this unit, your student should be able to:
\checkmark	Construct models of functions using graphs, equations,
	and tables
\checkmark	Use function notation and interpret statements that
	use function notation in terms of their context
\checkmark	Describe the real world meaning of the domain of a
	function
\checkmark	Calculate and interpret the average rate of change of a
	function from a graph, table or an equation
\checkmark	Write a function that describes a relationship between
	two quantities

Key Vocabulary							
	Terms to deepen the student's understanding						
$\checkmark \checkmark$	Domain						
\checkmark	Explicit Equation						
\checkmark	Input						
\checkmark	Iteration						
\checkmark	Output						
\checkmark	Range						
\checkmark	Recursive Equation						
\checkmark	Relation						
\checkmark	Sequence						
\checkmark	Function						
\checkmark	Vertical Line Test						

Where This Unit Fits
Connections to prior and future learning

Coming into this unit, students should have a strong foundation in:
\checkmark Operations with integers
\checkmark Solving 1 variable equations
\checkmark Plotting points on a coordinate plane
\checkmark Basic knowledge of exponents

This unit builds to the following future skills and concepts:

\checkmark Solving linear, quadratic, \& exponential equations
A-REI. 10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane

F-IF. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range

F-IF. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Note: At this level, the focus is linear and exponential functions.

F-IF. 3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=f(n)+f(n-1)$ for $n \geq 1$.
\checkmark Solving systems of equations and inequalities through graphing
\checkmark Graphing and analyzing more complex functions (including inverse, step, exponential, absolute value, trigonometric and logarithmic functions)
\checkmark Using regression lines to predict linear, quadratic and exponential models

Math I UNIT 3 OVERVIEW: Two Variable Equations \& Functions

F-IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Note: At this level, focus on linear, exponential and quadratic functions; no end behavior or periodicity.

F-IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. Note: At this level, focus on linear and exponential functions

F-IF. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Note: At this level, focus on linear functions and exponential functions whose domain is the subset of integers

F-BF. 1 Write a function that describes a relationship between two quantities

F-BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs

```
                    Additional Resources
    Materials to support understanding and enrichment
    \(\checkmark\) Teaching videos made by Wake County teachers
    \(\checkmark\) WCPSS YouTube Channel - Math Playlist
    \(\checkmark\) Rate of change/slope overview (video)
    \(\checkmark\) Finding rate of change from a graph (practice)
    \(\checkmark\) Domain and range overview (video)
    \(\checkmark\) Finding domain and range (practice)
    \(\checkmark\) Determining if a relation is a function (practice)
    \(\checkmark\) Determining if a graph is a function (practice)
    \(\checkmark\) Rate of change (formative assessment)
```


"Learning Checks"

Questions Parents Can Use to Assess Understanding
\checkmark How can the relationship between two quantities be described or represented?
\checkmark How are the key features such as rate of change identified, described, and interpreted from different representations of functions?
\checkmark How do you decide which representations of a function are most useful for solving problems in different mathematical and real world settings?

[^0]
[^0]: * Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact wakemiddle@wcpss.net.

