Math I UNIT 1 OVERVIEW: One Variable Equations and Inequalities

Unit Outcomes At the end of this unit, your student should be able to:	Key Vocabulary Terms to deepen the student's understanding
\checkmark Write and simplify expressions \checkmark Interpret parts of expressions such as terms, factors, constants, and coefficients \checkmark Solve linear equations with rational number coefficients \checkmark Create equations and inequalities with one variable \checkmark Determine how many solutions an equation has \checkmark Use the Pythagorean Theorem to find missing sides of a right triangle \checkmark Use the Pythagorean Theorem to find the distance between two points \checkmark Know the difference between equations and inequalities	\checkmark Algebraic Expression \checkmark Coefficient \checkmark Constant \checkmark Integer \checkmark Distributive Property \checkmark Equivalent Expression \checkmark Like Term \checkmark Order of Operations \checkmark Substitute \checkmark Term \checkmark Algebraic Equation \checkmark Inverse Operations \checkmark Undefined \checkmark Solution \checkmark Distance Formula \checkmark Hypotenuse \checkmark Pythagorean Theorem \checkmark Pythagorean Triple \checkmark Simplify \checkmark Variable \checkmark Identities \checkmark Linear Inequality \checkmark Leg \checkmark Right Angle
Key Standards Addressed Connections to Common Core/NC Essential Standards	Where This Unit Fits Connections to prior and future learning
8.EE. 7 Solve equations with one variable using rational numbers (may have one solution, infinite solutions, or no solution) 8.G.6 Explain the Pythagorean Theorem 8.G. 7 Use the Pythagorean Theorem to find missing sides of a right triangle 8.G.8 Use the Pythagorean Theorem to find the distance between points N-RN. 1 Explain the meaning of rational exponents allowing for a notation of radicals in terms of rational exponents N-RN. 2 Rewrite expressions involving radicals and rational exponents using the properties of exponents N-Q. 1 Choose and interpret units consistently in formulas	Coming into this unit, students should have a strong foundation in: \checkmark Basic arithmetic involving rational numbers \checkmark Writing simple equations and expressions \checkmark Solving 2 step equations and inequalities \checkmark Creating 1 or 2 step equations from word problems \checkmark Finding area of 2D shapes \checkmark Finding volume of prisms, cylinders, \& square based pyramids This unit builds to the following future skills and concepts: \checkmark Solving 2 variable equations and inequalities \checkmark Understanding and solving systems of equations/inequalities $\checkmark \quad$ Writing and solving quadratic and exponential equations \checkmark Finding Volume of more complex shapes \checkmark Manipulating Equations with exponents and radicals

Math I UNIT 1 OVERVIEW: One Variable Equations and Inequalities

N-Q. 3 Choose a level of accuracy appropriate to limitations of measurement when reporting quantities

A-SSE. 1 Interpret expressions that represent a quantity in terms of its context.

A-CED.1Create Equations and Inequalities with one variable
A.CED. 4 Rearrange equations to highlight a quantity of interest

A-REI. 1 Explain each step in solving a simple equation

A-REI. 3 Solve Equations and inequalities with one variable including equations with coefficients represented by letters

A-REI. 11 Explain why the x value in the point of intersection of two lines is the solution

G-GMD. 1 Give an informal argument for geometric formulas

G-GMD. 3 Use volume formulas to solve problems

G-GMD. 7 Use coordinates to compute the perimeter of polygons

	Additional Resources
Materials to support understanding and enrichment	
\checkmark	Teaching videos made by Wake County teachers
\checkmark	WCPSS YouTube Channel - Math Playlist
\checkmark	Linear Equations
\checkmark	Solving Linear Equations
\checkmark	Linear Inequalities
\checkmark	Solving Equations with Variables on Both Sides
\checkmark	Pythagorean Theorem
\checkmark	Identities and No Solutions
\checkmark	Distance Formula Video
\checkmark	Distance Formula Practice
\checkmark	Solving Equations with Variables on Both Sides
\checkmark	Identity and No Solution Equations
\checkmark	The Pythagorean Theorem
\checkmark	Calculating Volume
\checkmark	Pythagorean Theorem Proof
\checkmark	Derive Distance Formula

"Learning Checks"

Questions Parents Can Use to Assess Understanding
\checkmark How is the Pythagorean Theorem used in the realworld?
$\checkmark \quad$ How are the origin, units, and scale used to find information from a graph?
\checkmark When is it appropriate to create and use an inequality versus an equation?
\checkmark How are perimeter, area, and volume applied in real world situations?
\checkmark How do I use the structure of algebraic expressions to solve problems?
\checkmark How do the properties of exponents compare to other mathematical properties that you have learned?
$\checkmark \quad$ Why is area based on square units? Why is volume based on cubic units?
\checkmark Why are volume formulas based on the concept of area of the base times the height of the figure?

[^0]
[^0]: * Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact wakemiddle@wcpss.net.

